Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica

Corso di

MECCANICA QUANTISTICA

Prova Scritta

19 luglio 2017

- Ogni problema vale 10/30. Per l'ammissione all'orale è necessario ottenere la sufficienza, 18/30.
- È permessa la consultazione dei testi e degli appunti del corso. È ammesso l'uso di calcolatori portatili.
- 1. In un problema unidimensionale, lo stato di una particella di massa m che si trova in una buca di potenziale di profondità infinita

$$V(x) = \begin{cases} 0 & |x| \le \frac{L}{2} ,\\ +\infty & |x| > \frac{L}{2} , \end{cases},$$

è descritto dalla funzione d'onda

$$\psi(x) = ax^3 + bx^2 + cx + d \ . \tag{1}$$

- a) Imponendo le condizioni al contorno, che (1) sia ortogonale alla funzione d' onda dello stato fondamentale della buca infinita di potenziale e richiedendo la normalizzazione, si ricavino le costanti $a, b, c \in d$.
- b) Con le costanti determinate in a, si calcoli il valor medio dell' energia E nello stato (1) e l' errore relativo tra E e il valore esatto dell'energia del primo stato eccitato E_2 .
- 2. L' hamiltoniana di una particella di spin 1/2 è data da

$$H = \frac{\vec{L}^2}{2I} + a\vec{L} \cdot \vec{S} \; ,$$

dove \vec{L} e \vec{S} sono rispettivamente il momenti angolari orbitale e di spin, a e I due costanti reali e positive.

- a) Costruire (in termini delle funzioni sferiche e degli autospinori di S_z , χ_{\pm}) i due autostati simultanei di \vec{J}^2 , \vec{L}^2 e J_z corrispondenti rispettivamente agli autovalori: $\frac{15}{4}\hbar^2$, $2\hbar^2$, $\hbar/2$ (per il primo) e: $\frac{3}{4}\hbar^2$, $2\hbar^2$, $\hbar/2$ (per il secondo). Mostrare anche che questi due stati sono autostati di H e determinarne i due autovalori relativi.
- b) Se all' istante t=0 il sistema si trova in un autostato di \vec{L}^2 , L_z e S_z corrispondente, rispettivamente, agli autovalori: $2\hbar^2$, 0, $\hbar/2$, scrivere lo stato del sistema al generico istante t>0. Dire, infine, dopo quale intervallo minimo di tempo T il sistema torna allo stato iniziale, a meno di un fattore di fase globale.
- 3. Sia dato un sistema di due particelle identiche di spin generico s (come di consueto, s è il numero quantico legato all' autovalore $s(s+1)\hbar^2$ dell' operatore \vec{S}^2 , essendo \vec{S} il momento di spin di ciascuna particella).
 - a) Mostrare che il rapporto tra il numero di stati di spin simmetrici, rispetto allo scambio delle due particelle e il numero di stati antisimmetrici è $\frac{s+1}{s}$.
 - b) Supponiamo poi che la funzione d'onda del sistema sia fattorizzabile in una parte orbitale e in una parte di spin e che la parte orbitale sia simmetrica rispetto allo scambio delle coordinate spaziali delle due particelle. Dire quanti sono i possibili stati indipendenti di spin.