Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica

Corso di

MECCANICA QUANTISTICA

Prova Scritta

25 giugno 2018

- Ogni problema vale 10/30. Per l'ammissione all'orale è necessario ottenere la sufficienza, 18/30.
- È permessa la consultazione dei testi e degli appunti del corso. È ammesso l'uso di calcolatori portatili.
- 1. Due bosoni identici di spin zero e non interagenti fra loro sono immersi in un campo centrale. Ognuno di essi si trova in stati di singola particella caratterizzati dagli stessi numeri quantici n' e ℓ (n' = numero quantico radiale; ℓ numero quantico azimutale), con ℓ = 1. Qual è il numero e la forma dei differenti stati di questo tipo del sistema delle due particelle? Quale sarebbe la risposta alla precedente domanda se le particelle fossero distinguibili?
- 2. Una particella di massa μ , senza spin, è soggetta ad un generico potenziale centrale V(r) $(r = |\vec{r}|)$. Si indichino con $E_{n,\ell}$ e $v_{n,\ell,m}(r,\theta,\varphi)$, rispettivamente, gli autovalori dello spettro discreto e le corrispondenti autofunzioni degli operatori H, L^2 e L_z $(H=\text{hamiltoniana e }\vec{L}=\text{momento angolare orbitale della particella}); <math>n$, ℓ e mnumero quantico radiale, azimutale e magnetico.
 - a) Cercare la corrispondenza tra $E_{n,0}$ e $v_{n,0,0}(r)$, per stati s ($\ell = 0$), e gli autovalori discreti E_n e le autofunzioni dell' energia $u_n(x)$ per un problema unidimensionale con un potenziale U(x) tale che U(x) = V(x) (per $x \ge 0$) e $U(x) = +\infty$ (per x < 0).
 - b) Servendosi della corrispondenza trovata, cercare le condizioni di esistenza di livelli discreti, per il potenziale tridimensionale, nel caso in cui V(r) sia dato da: $V(r) = -V_0$ (per $r \le a$; $V_0 > 0$) e V(r) = 0 (per r > a)
- 3. Siano \vec{L} e \vec{S} , rispettivamente, il momento angolare orbitale e di spin di una particella di spin 1/2. Il suo stato è caratterizzato da assegnati valori dei numeri quantici ℓ , m_{ℓ} e m_s (legati come di consueto agli autovalori di L^2 , L_z e S_z).
 - a) Scrivere esplicitamente questo stato e calcolare il valor medio di J^2 , dove $\vec{J} = \vec{L} + \vec{S}$ è il momento angolare totale.
 - b) Dire quali sono i possibili risultati di una misura di J^2 e quali le rispettive probabilità, usando solamente quanto è stato ottenuto al punto a).