Quesiti:

- 1) Discutere il concetto di capacità elettrostatica di un corpo e di condensatore.
- 2) Discutere la teoria della gravitazione universale e il metodo di misura della massa della Terra.
- 3) Discutere il teorema del lavoro e dell'energia cinetica con una applicazione.
- 4) Spiegare i principi fisici che permettono ai sommergibili di spostarsi in verticale sotto il mare.
- 5) Discutere il concetto di entropia e le connessioni con il secondo principio della termodinamica.
- 6) Discutere il concetto di centro di massa di un corpo e le condizioni di equilibrio di un corpo rigido.
- N.B. Discutere significa enunciare i principi, introdurre le formule (se necessario), spiegare con esempi concreti come i principi si applicano, valutare le conseguenze e le relazioni con altri concetti. Ogni quesito o esercizio completamente e correttamente svolto ha una valutazione massima di 3/30. Ogni esercizio copiato vale -1/30.

Problemi:

Problema 1:

Un subacqueo nuota ad una profondità **H**, e la pressione dell'acqua a tale profondità è pari a **P**₁. L'aria che espira forma bolle di raggio **R** che risalgono molto lentamente verso la superficie. Se si suppone che la temperatura all'interno della bolla sia **T** e che rimanga costante, calcolare:

1) il lavoro compiuto da una bolla durante la risalita fino alla superficie dell'acqua.

 $H = 25.0 \,\mathrm{m};$

 $P_1 = 3.5 atm;$

 $T = 27^{\circ} C;$

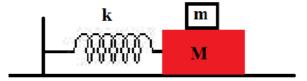
R = 8 mm;

R = 8.31 J/mol/K

Problema 2:

Due blocchi di massa m e M ed una molla di costante elastica k sono disposti come in figura. Il piano di appoggio è senza attrito, mentre il coefficiente di attrito statico tra i due blocchi è μ_s . Calcolare:

1) La massima estensione a cui può essere allungata (o compressa) la molla rispetto alla posizione di riposo affinché il moto che ne deriva non causi lo slittamento relativo dei due blocchi.


Dati del problema:

 $\mathbf{m} = 1.0 \text{ kg}$;

M = 10.0 kg;

k = 200.0 N/m;

 $\mu_{\rm s} = 0.40$;

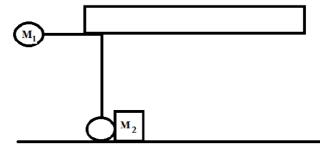
Problema 3:

Una carica Q viene divisa in due parti, Q_1 e Q_2 poste ad una distanza D. Calcolare:

- 1) Il valore di Q_1 affinché la repulsione elettrostatica sia massima.
- 2) Usando la soluzione del punto precedente per la divisione di carica, il valore della distanza tra le due cariche **d** affinché la repulsione elettrostatica sia minima.

Dati del problema:

Q = 18.0 C;D = 5.0 m;


Problema 4:

Un corpo di massa M_1 appeso ad un filo teso (vedi figura) viene lasciato cadere dalla posizione descritta dalla linea tratteggiata e colpisce un corpo di massa M_2 appoggiato su un pavimento senza attrito. Se l'urto è completamente elastico, calcolare:

 A quale quota risale il corpo M₁ dopo l'urto?

Dati del problema:

 $M_1 = 20 \text{ kg};$ $M_2 = 40 \text{ kg};$

Problema 5:

Un tubo di gomma di diametro \mathbf{D} è usato per riempire una vasca rotonda di raggio \mathbf{R} . Se la velocità di uscita dell'acqua è \mathbf{V} e il livello che il liquido deve raggiungere è \mathbf{H} , calcolare il tempo necessario.

Dati del problema:

 $\mathbf{D} = 4 \text{ cm};$

 $\mathbf{R} = 150 \text{ cm};$

V = 1.2 m/s;

H = 130 cm:

Problema 6:

Una molla verticale si allunga di un tratto \mathbf{D} quando viene appeso un blocco di massa \mathbf{M} alla sua estremità inferiore.

Calcolare:

1) la costante elastica della molla.

Se si sposta il blocco verso il basso di una ulteriore distanza d, e lo si lascia poi libero da fermo, calcolare:

- 2) il periodo di oscillazione;
- 3) l'ampiezza della oscillazione;
- 4) la velocità massima del blocco.

Dati del problema:

 $\mathbf{D} = 9.0 \text{ cm};$ $\mathbf{M} = 1.3 \text{ kg};$

d = 6.0 cm;